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Dynamic Analysis for Free Vibrations
of Rotating Sandwich Tapered Beams

C. L. Ko*
Oakland University, Rochester, Michigan

Governing equations for free vibrations of rotating sandwich rectangular and tapered beams are obtained
from a previous analysis using the variational method reported by the author. Both Timoshenko’s and Euler-
Bernoulli’s beam models are considered in these formulations. The analysis includes the effects of the variation
of the neutral-axis location along the beam due to both the centrifugal effect and a nonsymmetric geometry. This
paper presents a pioneer work to determine the vibration characteristics of both symmetrically and nonsymmet-
rically tapered and rectangular sandwich beams under rotation. Natural frequencies of these beams are deter-
mined for various rotating speeds by solving the eigenvalue problems using the finite-difference method. These
results indicate that both the asymmetric geometry and the rotating speed can affect the dynamic behavior of a

sandwich beam greatly.

Introduction

IBRATION characteristics of rotating beams can be very
important in various engineering applications. Structural
components such as helicopter rotor blades, propellers, turbo-
machinery rotor blades, and robot arms are frequently mod-
eled as rotating cantilever beams. The problem of bending
vibration of a rotating beam was first solved by Lo and Ren-
barger.! Boyce et al.? later extended the analysis for various
boundary conditions and estimated lower and upper bounds
on natural frequencies. The influence of a tip mass on the
natural frequencies of a uniform rotating cantilever beam was
also investigated extensively by Handelman et al.,’ Boyce and
Handelman,* Jones,’ and Hoa.® Recently, Tomar and Jain’-?
determined the thermal effect on frequencies of pretwisted and
wedge-shaped beams. Laurensen® investigated the influence of
mass representation on the equation of motion for rotating
structures. Free vibrations of centrifugally stiffened beams
were considered by Wright et al.!® Bruch and Mitchell! also
modeled a robot link (arm) as a mass-loaded cantilever Timo-
shenko beam and determined its natural fequencies. However,
the rotational action was not considered in their formulations.
Sandwich constructions have been widely applied for vari-
ous aerospace applications for weight-saving and strength op-
timization. Bert!? presented a brief overview for such applica-
tions. Vibration problems for rectangular, symmetric, sand-
wich beams have been investigated extensively for the past
three decades. These include the analyses reported by Koba-
yashi,!® Krajcinovic,'* Kimel et al.,'* Raville et al.,!¢ James,"”
Glaser,!® Clary and Leadbetter,!® and Bert et al.2> However,
based on the author’s knowledge, formulations for bending
vibrations for either tapered sandwich beams or rotating sand-
wich beams have never been reported in literature, except those
developed by the author recently.?! In Ref. 21, the author
derived the governing equations for the dynamic response and
flexural behavior of general rotating sandwich beams by ap-
plying the energy principle and the variational method. How-
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ever, only results for the semistatic flexural behavior were
obtained. The objectives of this investigation, therefore, are to
formulate the governing equations and to obtain their solu-
tions for free vibrations of both symmetrically and nonsym-
metrically tapered rotating sandwich beams. Dynamic re-
sponse of a symmetric rectangular sandwich beam is also
included in this analysis. , ‘

As pointed out in Ref. 21, the neutral axis position of a
beam does not necessarily coincide with the centroidal axis if
the beam is either under rotation or nonsymmetrically con-
structed. Arnalyses which included this consideratioii have
never been reported in literature, except by the author. In
addition, the flexural rigidity in the core and the shear defor-
mation of the facings were normally neglected in the dynamic
analyses of sandwich beams; therefore, their éffects upon the
determination of natural frequencies have never been con-
sidered, to date.? Results obtained in this paper are for the
first time calculated from an analysi$ that included all these
considerations.

Descriptions of the Problen

Consider a cantilever sandwich tapered beam, as shown in
Fig. 1. The origin of the Cartesian coordinates shown is posi-
tioned at the center of the core at the fixed end and the beam
is rotating with respect to the y-axis with a constant angular
speed Q. The half-depth of the core is A, and the transverse
coordinates of the outer edges of the top and the bottom
facings are — h, and h;, respectively. The Young’s modulus,
shear modulus, and density of the cord are given as E,, G,, and
p1, respectively; whereas those for the top and bottom facings
are denoted as E,, G,, p, and E;, Gs, p;, respectively. The
length and width of the beam are given as L and b, respec-
tively.

The general governing equations and boundary conditions
for the dynamic and flexural behavior were derived by the
author.?! The centrifugal and nonsymmetric effects on the
variation of neutral-axis positions were included in the analy-
sis, using both Euler-Bernoulli’s and Timoshenko’s model.
Solutions of these equations consist of two parts: a time-de-
pendent function and a time-independent function. These two
functions correspond to solutions for dynamic response and
semistatic behavior of the beam. The time-independent solu-
tions for semistatic (or flexural) behavior were presented in
Ref. 21. The present paper treats only the case of dynamic
response due to free vibrations.
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Fig. 1 A rotating sandwich cantilever beam.

Timoshenko Beams

The governing equations for the dynamic response of the
beam under free vibration can be deduced from Egs. (55-57)
of Ref. 21, as follows:

o5t a5t amne) + (5 5)
—m%} + Qz[az< 6(;4)/:> —aluo] =0 )
o ) v+ |
a6<g¢ 8;:0>] + Qz[azuo —a3<\lz+a(,;;”>] =0 (2
£l o 55)
at? 2 9r2 o " axar?
- | ) -

+QZ£} [a3<¢+%—‘jc‘3> —azuo} =0 &)

where u,, w,, and ¢ are the axial displacement of the core
midplane, the transverse displacement, and the angle of rota-
tional deformation of the beam, respectively. The coefficients
are defined as

ay = (2p1—p2— )1 + o2y + Iy

a, = [py(hf — h3) + p3(h3 ~h)1/2

ay = [201h7 + pa(h3 — D) + pa(h3 — hi))/3
a,= QE,—E,—E3)h, + Eyhy + Esh;

as = [Ex(hi — h3) + Es(hi —h)1/2

ag = [2E\hi + Ex(h3 — hi') + Ex(h3 — h{)}/3

a7 = 261Gy + k3Go(hy— ) + 13Gs(h; — hy)
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The quantities «;, k;, and «; are the shear correction factors for

the core and the top and bottom facings, respectively. The

boundary conditions of the cantilever beam can be deduced

from Eqgs. (65), (68), (69), and (70) in Ref. 21, as follows:
At the fixed end (x =0):

aw,
x/xzu(,:w,,:a-:O 4

At the free end (x=L):

ot oG )+ 2 a3+ 5%)
—as aal;} + 92[a3< aax> - azu,,] =0 @)

Euler-Bernoulli Beams

The governing equations for the response of the beam under
frec vibration can be obtained by simplifying Eqgs. (75) and
(76) of Ref. 21 as

Fu, 4 83w0 i) F*w, du,
L or2 2 oxar? 6x6t2 ax \ B ax2 T 5%

aw
+ Qz<a2 —59 - a,u0> =0 ®8)
Y 3*w, +£ B 6_214_0_ ’w, N P Fw, du,
9 Tax\ o T P xar) T e \ M el TP ex
d aw,
20 [ OWo _
+Q I <a3 o a2u0> 0 )

The boundary conditions reduce to the following:
At the fixed end (x =0):

Iw,
ax

Uy, =W, = =0 (10)

At the free end (x =L):

du, _ Pwo
ax ~ ax?

du, . 3w, N 9 & w, du,
25r2 Yoxorr T ax \4

=0 (11)

% ax2 as ax
aw,
+ 92<a3 a—‘fc —azuo> -0 (12)

Free Vibration of a Symmetric
Rectangular Sandwich Beam

For the case of a rectangular sandwich beam, the coeffi-
cients of the governing equations and boundary conditions are
constant. In addition, @, and as vanish for a beam with sym-
metric facings; hence, the axial mode of vibration decouples
from the transverse mode and the rotational mode. The axial
displacement and transverse displacement can be represented
by harmonic functions as

Uy, = U(x) sin(wf +6;) (13)

= W(x) sin(wyt + 65) (14)
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where w; and w, are natural angular frequencies for the axial
and transverse modes, respectively. The quantities 6, and 6, are
the phase angles for the corresponding modes.

Timoshenko Beams

The governing equations, Eqs. (1-3), can be reduced to the
following:

8 )l

_ a392<¢ + aw") =0 (16)
o (2 T ) (282

+ a392<‘;¢ a;:”> =0 un

The boundary condition at x = L, Eq. (7), can be simplified to

Ry, Pw, aw Pw >
5\ 52 T axarr) T %\ax2 T ax?
ow,
2 291 — 18
+ Q a3< ax> 0 ( )

Assume that the rotational mode y has the same frequency and
phase angle as the transverse mode w,. The harmonic expres-
sion of this mode becomes

¥ = ®(x) sin(wyf +06,) (19

Substituting Eqs. (13), (14), and (19) into Egs. (15), (16), and
(17), one obtains

2U
" + a(@}+ U =0 (20)
aw d*® d’'w
(23(.02 ®+71'; —a;® + ag W-}—W
aw
2 - =
+ a0 <<1>+ dx> 0 Q1)
, de W Ao d'w
a5 W — (130)2 d + dx? — Qg EF_’_ e
dd d*w
—a392< = 2) -0 (22)

Combining Egs. (21) and (22), one can obtain

dd _ (Xl(x)%
dx ~ a W (23)

Eq. (22) can then be expressed as follows by utilizing Eq. (23):
d*w a*w

2 2 2
+[aaw+Q +aaw]—-—
3a7(w3 ) + aagw; a2

aed7 —
+ [a1a3w§(w§ +0?) —a1a7w§] W =0 4)

The boundary conditions can be determined as follows:
At the fixed end (x =0):

P=U=W=—"==0 (25)
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At the free end (x =L):

duy

= e 0 (26)
arw
T Taw =0 @7)
aw aw
T T @is) = =0 (28)

where 8, =a,w3/a; and 8, = a;(w} + 0?)/aq.
The general solution of Eq. (20) that satisfies the boundary

conditions at the fixed end can be shown as

U =4 sinax (29)
where o2 =a,(w] +9Q%)/a, and A is an undetermined constant.
The following characteristic equation can be obtained by im-
posing the boundary conditions at the free end upon the modal
shape expressed by Eq. (29):

cosal =0 (30)

Hence, the natural angular frequencies for the axial modes can
be determined by

7l'2a4
w%:(n—l/z)zfz—a—l -, n=123,... (31)

The general solution of Eq. (24) can be determined for the
following cases:

case 1:  as(0}+9)>a,
W = C) cosfix + C; sinfix + C; cosfox + Cy sinfBox (32)
case 2: ay(wr+ )<
W = C; cosfix + Cysinfi1x + C; coshfzx + C,sinhfB3x  (33)
case 3: a3+ Q) =a;
W = CicosBix + Cysinfiix + Cy + Cux (34)
where
B =61 +6,+567)/2 8
By =~(6:—6,—5,)/2

2= V(6 +06,—83)/2
83 =(8,—8))* + 45}
8 = a,w3/as

The boundary conditions can be expressed into the following

form:
kn ko] (G [0 )
ka kn| |G 0

Expressions for &y, k)2, k1, and k, for all three cases are sum-
marized in Appendix A. The natural frequencies for the trans-
verse modes, w,, can then be determined from the following
characteristic equation:

kllk22 - k12k21 =0 (36)

Euler-Bernoulli Beams
The governing equation, Eq. (8), can be simplified to Eq.
(15) and its eigenvalues for axial modes can be determined by
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using the same relationship for Timoshenko beams. However,
Eq. (9) should reduce to

*w *w, *w
2 2 2 + 0392

N Fw,
U — s + ag—7
a2 3 ax2ae? 5 ax?

ax?

=0 37

The boundary condition expressed in Eq. (12) becomes

3w, Pw, aw,
@ ot Tl T HaG =0 G8)

Substituting Eqgs. (13) and (14) into Eq. (37) yields

4 2

174 d
(/73 —dx—4 + ag(w2 + 92) d

W awW =0 39)

The boundary conditions can be simplified to the following:
At the fixed end (x =0):

aw

=27 = 4
w p 0 (40)
At the free end (x =L):
a*w
— = 41
a2 =0 41
aw aw
o T =0 “2)

The general solution of Eq. (39) can be determined as
W = C, cospux + C; sinpyx + C; coshpuyx + Cysinhuyx  (43)
where
m=v(6+8)/2,

55 = 6% + 46%

2 =V(85—67)/2

Again, the boundary conditions reduce to the form expressed
in Eq. (35) and the characteristic equation is in the same form
as Eq. (36). Expressions for coefficients ky;, k13, k21, and &z,
are listed in Appendix A.

Free Vibration of a Sandwich Tapered Beam

For a tapered sandwich beam, the depths of the cord and
facings vary linearly along the longitudinal axis of the beam.
Their edge coordinates can be expressed as

hlzklo—slx h2=h20—s2x h3=h30—S3x (44)

where s, =(h,—h, )/ L, ss=(hy,—hy)/L, and s3=(h3,
—h3,)/L . The quantities A, , ks, 3, are the edge dimensions
at the fixed end (x = 0) of the beam, and &, , h;, , h3, are the
corresponding dimensions at the free end (x =L).

The coefficients of the governing equations and boundary
conditions become functions of x, as follows:

a;=c —bx a2=cz—d1x+b2x2

a3 = 3 —dox + dsx?—byx? ay = Ccy—byx
as = cs—dyx + bsx? Qg = Cg—dsx +dgx*— bgx?
a;=c¢;—byx oy = ds—2dgx + 3bex?
o, = dy—2dyx +3b3x? oy = 2bsx —d,
oy = 2byx —d, as = 3begx —dg 45)

where the constants b, ¢, and d are defined in Appendix B.
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Timoshenko Beams
The governing equations, Eqgs. (1-3), can be simplified to
the following for a nonsymmetrical tapered beam:

*u, 3y FPw, i Fw,
N T <8t2 warr) TP\t o

2
+ og(ﬂ + ¢ Wa> — a4 azuo b4

ax  ox? “ax?

+ Qz[a2<¢+ %) - a.uo] =0 (46)

Py Bw, Pu,  ou, du,
3<at2 o) POV T @ge tasgs vy

*y  Fw, W FPw
- "6<ax2 + ax;'> + al( 6x20> + Qayu,

ow,
- °)=0 47
a; <¢+ ax) 47
g iw, v a Fu, Fu, 34w0 3y
1oz TRy T e T B\ 5% Y axar

+a<33w" +az¢ +a aﬂ¢+a4

Noaxar? " ar? f\ax3 ax4
N Bw, W d*w, 3u,

B 2“‘(@ * ax3> 2a <8x toxz) T a0

u, duy o (0¥ 32Wo
—20l3—x— 2b5§ +Qa3 a axz

- oz292<1// + aw,,> — a2 % — @, =0 (48)

Combining Eq. (47) and Eq. (48), one obtains

a; 3w,

a; atz

W _b

ox a,

49)

The displacement functions can be assumed as follows for
harmonic vibration:

u, = U sin{w? +6) (50)
= W sin(wt +6) (51)
¥ = & sin(w? + ) (52)

where U is the angular frequencies and 8 is the phase angle for
all three modes. Substituting these functions into Eqs. (46-49),
one can eliminate ¢ and reduce the governing equations to

d*u du
(@D +aDy) 7 + (a3DI"‘b4D4)E

\w
~ @D +aD) T

W + (DyDs—D,Dy) d—W

+ (Qz + wz)(azD, +a D)V
+ (D) -—a3D4)

+ (Dy\D¢—D3D)W =0 (53)

d*u

[2Duuas + asa) - astasDr—aDi)| 25
21 o2 du
— [@iasDu(w? +9) + auDuDs + s(@sDy — auDi)| ==

+ [DA(bxas + @) (W? + Q%) + ayayDyy — asDs)(w? + 92)] Y
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d4
+ Dy@d—aia9) 3 + [2DutesDs +

aw
+ ag(asD; — a4D12)] a0 T [D4(05D13—04D9)

arw

+ al(a4D12-a5D7)] T + [D4(05D14—04D10)
aw

+ D5(a4D12——a5D7)] e + [D4(05D15—04Du)

~ D(asD; ~a.Dig) | W = 0 (54)

where the functions D are defined in Appendix B.

The boundary conditions at the fixed end (x =0) are identi-
cal to those given in Eq. (25). In addition to Eq. (26), boundary
conditions at the free end (x =L) include the following two
relations, which can be reduced from Eqgs. (6) and (7):

aw
a1w2W+a7—c-1x—2 =0 (55)
d2U d3W agdy
— (02 2 — i = 2 2 o1 2
@+ AU —as s +as T + [as(at+ 0+ . o]
< 4 +a6<?‘_b72ﬂ_ﬁ>w2w=o (56)
dx ay ar

Approximate techniques, such as the finite-difference
method, should be used to solve the eigenvalue problem, since
the coefficients of the governing equations and boundary con-
ditions are not constant and consequently obtaining the exact
form of the corresponding characteristic equation becomes
practically infeasible.

For a symmetrically tapered beam, Eqs. (46-48) reduce to

3 F*u du
Vg g t oy — e, =0 G
*  FPw Y  BPw,
“3<at2 6x6:2> taw —a (ax2 s
) P*w aw,
+ a1<aﬁ + 6x20> - a392<1// + ?.;) =0 (58)

Pw, By dw )\, (PY Pw,
Mo "%\ axar T axtarr) T\ a T axare
By 8w, Py Pw,
+"6<ax3 * o > 2a1<3x2 ax3
N Fw, 5 a¢ W,
_2"‘5<ax o) T\ g e
- a292<¢ + a’::) =0 (59

Since the axial mode decouples from the other two modes, the
natural frequencies of this mode may not be the same as those
of the other modes in general. Hence, displacement functions
should be assumed in the forms of Egs. (13), (14), and (19).
The governing equations then can be simplified to the follow-
ing by eliminating ¢ from Eqs. (55) and (56):

2y dVU
”“ile —bi—— +af+ U =0 (60)

W

W 2
06D4 + (@eD7— 2a1D4) + (D4D9"011D7)

daw
+ (D4D\o— DsDy) ax + (D4Dy, —DsD)W =0 61)
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The boundary conditions are identical to those for the non-
symmetrical case except that Eq. (56) can be reduced to:

3w > 0106 5 aw
ag—— P [a;(w +0) + — - ] p
+ a6<2"‘2b7 _ﬁ>w2W ~0 62)
ar a

Euler-Bernoulli Beams

The governing equations, Egs. (8) and (9), reduce to the
following for a nonsymmetrical tapered beam:

#u, u 3w,
T e b“ x ~ U —ag s
3 3? d
+05Ww30 +a3—5;w§ + Qa, ;’x" =0 (63)
Fw, 3w, N #w, ta d*w,
N TP T e T % okt
63w azw ow,
~ 201 S22+ (@ =20 T — ool L
Pu, 3*u, 3u, u,
Dot TH e TUn TN
2 du, 5
- (‘12Q + 2b5) E - a49 U, = 0 (64)

The displacement functions expressed in Eqs. (50) and (51) can
be utilized to simplify Egs. (63) and (64) to

du du a:w
g “hige taW+®U —ay
3w aw
—a;a—z‘— —02(924-0.!2)?1; =0 (65)

d* d?
(2406~ a3) Tt~ Amastasas) =

2

d
+ [(a3a4 — 2225 )(? + w?) — 2(asa, + b5a5)] )

W
- [(a2a4 + (!405)(92 + wz)] C;_x - a,a4w2 w

2

d’U
— 2asa+baa) = + [(@as—aa) @+ o)

- 2b5a4] AY (et bua)(@+e)U = 0 (66)

dx

The boundary conditions can be deduced from Egs. (10), (11),
and (12) as
At the fixed end (x =0):

aw
U=W-= e =0 67
At the free end (x=L):
du da*w
T (68)
aw d*yU

d3
G5y + @@+ - —as 3~ a@+)U =0 (69)

For a symmetrically tapered beam, Eqs. (63) and (64) reduce to

u, 6 u,

1 F - axz b4 - alﬂzuo =0 (70)



1430

Table 1

C. L.KO

vibrations of symmetric sandwich beams at various rotating speeds (?)

Natural frequencies of the longitudinal («1) and the transverse (w2)

Beam A (rectangular)

Beam C (tapered)

AJAA JOURNAL

wi wy (Hertz) Wl w2 (Hertz)
Mode Q (Hertz) - (Hertz)
number (Hertz) TBM & EBM TBM EBM TBM & EBM TBM EBM
0 421.9 27.12 27.09 444 .2 26.64 26.55
50 419.0 26.94 26.91 441.3 26.54 26.44
100 409.9 26.41 26.37 432.8 26.22 26.12
200 371.5 24.11 24.07 396.6 24.90 24.80
1 300 296.7 19.53 19.47 327.5 22.50 22.40
400 134.3 9.18 9.14 193.1 18.54 18.43
420 40.4 3.38 3.36 144.5 17.46 17.36
500 — — e — 11.29 11.21
540 — —_ —_— _ 4.96 4.93
600 — — —_ — — S
0 1266 165.2 167.8 1274 139.4 140.3
50 1265 165.0 167.7 1273 139.2 140.2
100 1262 164.5 167.1 1270 138.9 139.8
2 200 1250 162.2 164.7 1258 137.5 138.4
300 1230 158.4 160.7 1238 135.1 1359
400 1201 152.8 154.9 1210 131.7 132.4
500 1163 145.4 147.1 1172 127.2 127.8
700 1115 135.6 137.1 1124 121.5 121.9
0 2110 439.6 461.8 2114 358.8 369.2
50 2109 439.5 461.6 2113 358.7 369.1
100 2107 439.1 461.1 2112 358.4 368.8
3 200 2100 437.4 459.2 2105 357.2 367.4
300 2088 434.6 455.9 2093 355.2 365.2
400 2071 430.1 451.3 2076 352.4 362.1
500 2050 425.5 445.3 2054 348.7 358.0
600 2023 419.1 437.9 2027 344.2 352.9
a Fw, a ¥w, ” Fw, aé@“_wg o 3w, G, = 2.62% 10" Pa (3.80 X 10° psi)
ar? Ix29t? dxat? ax* ax?

aw,
ox
Since governing equations become decoupled, the displace-

ment functions should be assumed in the forms of Eqgs. (13)
and (14). Equations (70) and (71), therefore, become

2
+ Qa3 — 2as) % —a 2 _g an

d?u du
@G —b471; + (40U =0 (72)
a‘w aw aw
Ge g =200 o + [a3(92+ o) —-2a5] T
— (@ + wd) %V — W =0 (73)

The boundary condition at x =L expressed in Eq. (69) be-
comes
a:w 5 dW
ag —(17 + 03(92 + w3) E =0 (74)
Since the coefficients @ and « are functions of X, numerical
techniques should be employed to solve these eigenvalue prob-
lems.

Numerical Examples

Four cantilever sandwich rotating beams are considered for
numerical computations: a symmetric rectangular beam (beam
A), a nonsymmetric rectangular beam (beam B), a symmetri-
cally tapered beam (beam C), and a nonsymmetrically tapered
beam (beam D). Aluminum core with steel facings are modeled
for the sandwich construction. Hence, the material properties
are selected, as follows:

E; = 6.89 % 10'° Pa (10 10° psi)

E, = E;=2.07x 10" Pa (30 x 10° psi)

G> = G; = 8.00x 10'° Pa (11.5x 105 psi)
p1 = 2643 kg/m? (165 lbm/ft3)

p2 = p3 = 7770 kg/m> (485 lbm/ft?)

The shear correction factors are chosen to be 0.850 for both
materials by following Cowper’s formulation? for rectangular
cross sections. The beam lengths of these beams are chosen to
be 3.05 m (10 ft). The half-thickness of the core (/) is selected
as 0.0762 m (3 in.) for rectangular beams (beams A and B).
A uniform thickness of 0.0508 m (2 in.) is selected for both
facings of beam A, whereas the thickness of the bottom facing
of beam B is changed to 0.0762 m (3 in.) to model its nonsym-
metric behavior. The core thickness of beams C and D are
tapered from 0.0762 m (3 in.) at the fixed end to 0.0254 m (1
in.) at the free end. Both facings of these beams have uniform
thickness. Beam C has a symmetric geometry with a 0.0508 m
(2 in.) facing thickness on both sides, whereas the thickness of
the bottom facing of beam D is changed to 0.0762 m (3 in.) to
model its nonsymmetric characteristic.

Governing equations for both Timoshenko’s beam model
(TBM) and Euler-Bernoulli’s model (EBM) were solved by the
finite-difference method, except those of beam A. Nonsym-
metric beams (beams B and D) and the symmetrically tapered
beam (beam C) were divided into 25 and 50 segments, respec-
tivley. The eigenvalue problems were solved by evaluating de-
terminants with an order of 50 x 50.

Table 1 shows the natural frequencies of the first three
modes for both the transverse and the longitudinal vibrations
of the symmetric beams (beams A and C). Results for beam A
were obtained from the solutions listed in Appendix A. The
values of natural frequencies for both the transverse and the
extensional modes decrease with increasing rotating speed.
The fundamental frequencies disappear at a high speed of
rotation. Table 2 shows the natural frequencies of the first
three modes for nonsymmetric beams (beams B and D). The
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Table 2 Natural frequencies in Hertz for coupled vibrations
of nonsymmetric sandwich beams at various rotating speeds ()

Beam D (tapered)'

Mode Q Beam B (rectangular)
number (Hertz) TBM EBM TBM EBM
0 29.30 29.26 28.54 28.50
50 29.11 29.07 28.42 28.39
100 28.53 28.49 28.07 28.03
200 36.06 26.00 26.59 26.54
1 300 21.10 21.08 23.87 23.81
400 9.92 9.86 19.28 19.21
420 3.62 3.60 17.97 17.91
500 — —_ 10.65 10.60
530 —_— —_— 4.51 4.49
600 —_ —_— _— —_—
0 176.8 180.0 150.7 152.4
50 176.6 179.8 150.6 152.3
100 176.0 179.2 150.2 151.9
200 173.6 176.6 148.7 150.3
2 300 169.5 172.3 146.0 147.5
400 163.6 166.1 142.3 143.6
500 155.6 157.7 137.3 138.4
600 145.1 146.9 130.8 131.7
0 464.1 490.4 386.0 400.2
50 463.9 490.2 385.9 400.1
100 463.5 489.7 385.6 399.7
3 200 461.8 487.6 384.3 398.2
300 458.8 484.1 382.1 395.8
400 454.7 479.2 379.0 392.3
500 449.3 472.8 375.1 387.8
600 4425 464.9 370.1 382.2

Fundamental Mode

Fig. 2 Modal shapes for the transverse vibration of a rotating sand-
wich cantilever beam.

transverse and the extensional oscillations are coupled into one
mode with a single frequency for these cases. Their values vary
with the rotating speed in the same way as those of symmetric
beams. For most cases, the EBM predicted higher frequencies
than those calculated by TBM for higher modes; however, the
opposite trend can also be observed for fundamental modes.
The effect of beam geometry indicated by these results is in-
conclusive, also. However, for most cases, rectangular beams
have higher frequencies for transverse or coupled vibrations
and lower frequencies for longitudinal vibrations than their
tapered counterparts. Typical modal shapes of the transverse
and the longitudinal vibrations of a nonsymmetric sandwich
beam are shown in Figs. 2 and 3, respectively. Those for sym-

Fundamental Mod

0 0.2 0.4 0.6 0.8 1

Fig. 3 Modal shapes for the longitudinal vibration of a rotating
sandwich cantilever beam.

metric beams do not differ qualitatively from those shown in
these figures. Rotational speed also has little effect on the
qualitative characteristics of these modal shapes, except that
lower frequency modes vanish at an extremely high rotating
speed.

The natural frequencies of a nonrotating homogeneous
beam can be determined by treating it as a special case of a
sandwich beam. For a nonrotating rectangular homogeneous
beam, Eq. (31) reduces to the expression of natural frequencies
for longitudinal vibration of a cantilever beam, given by Den
Hartog.? For a steel beam with the same geometry as beam A,
the frequencies of the first three modes can be determined as
423.3 Hz, 1270 Hz, and 2116 Hz, which are slightly higher
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Table 3 Comparison of the first three natural frequencies
in Hertz for transverse vibration of a homogeneous nonrotating
steel cantilever beam (length = 10 ft, depth = 10 in.)
calculated by using the present models and
the classical Euler-Bernoulli’s model (Ref. 24)

Present models

Mode TBM EBM Classical EBM
1 22.78 22.77 22.82
2 140.0 141.6 142.6
3 377.5 391.4 400.1

than those of beam A. This is reasonable because beam A is
less stiff than the homogeneous steel beam. Comparison of the
frequencies for transverse vibrations of this homogeneous steel
beam calculated by the present models with those calculated by
the formula given by Den Hartog?* is shown in Table 3. Both
EBM and TBM predict slightly lower vlaues than those calcu-
lated by the classical method. These results indicate that the
formulation, by including the neutral axis variation, predicts
lower frequencies than those calculated by the classical
method. The effect of this neutral-axis variation is not very
significant for low-frequency modes due to the homogeneous
and nonrotating characteristics of the beam.

Conclusions

The governing equations for the free vibration of a rotating
sandwich beam have been solved numerically and reasonable
results have been obtained. These equations include the effect
of the variation of the neutral axis position along the beam.
This effect can be very significant for a rotating sandwich
beam, due to both the centrifugal force and a nonsymmetric
distribution of property or geometry.

The natural frequencies of a rotating beam have been shown
to vary with the rotating speed. In addition, at a high speed,
the lower frequency modes or the fundamental mode can van-
ish. This indicates that the dynamic behavior of a rotating
sandwich beam can differ drastically from that of a nonrotat-
ing sandwich beam.

Appendix A: Coefficients of the
Characteristic Equation for the Transverse Response
of a Symmetric Rectangular Sandwich Beam

Coefficients of the characteristic equation, Eq. (36), are de-
fined as shown below:

Timoshenko Beams
Case I:  ay(3+Q)>a,

k11 = (B3—8)) cosBoL + (8, —BY) cosBiL

8 .
K12 = (8,87) sinB, L + (5152——25—1> sinB,L

ka1 = Bi(B} — 8, — 65) sinB,L + B8, + 6~ B) sinB,L
Ko = 31(8, + 6, — %) cosB L + 51(3%—51 —&,) cosf,L
Case 2: ay(w3+ Q) <ay

k1 = (6, —B3) cosBiL — (8, + B3) coshB;L
k12 = (5~ B sinBiL — Zﬁi 61+ 62 sinhBsL

k21 = B(B1 — 8, —8,) sinBiL — B3(8, + 6, + B3) sinhB;L

K22 = B1(8) + 8, — B3) cosBiL — B4(8; + 8, + B3) coshB;L
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Case 3: ay(w3+Q) = a;

ki1 = (8;—B]) cosBiL —§

ki3 = (8, = B7) sinB,L — BIL

Ka1 = B1(B1 — 8, —82) sinBiL

K22 = B31(8; + 8, — B7) cosBiL — B,(81+8y)
Euler-Bernoulli Beams

ki1 = pd cosp L + pb coshp,L

k12 = pi sinpi L + pips sinhp,L

ka1 = pylp] —6,) sinpy L — po(p3 + 85) sinhp, L

K22 = pi(8 — ) cosp L — py(u3 + 82) coshy, L

Appendix B: Definitions of Coefficients of
the Governing Equations for a
Rotating Tapered Sandwich Beam
c1=2p 1, + palha, — hyy) + p3(hs, —hy,)
[oaht, —13,) + oxh3,— 3 )| 72
203, +p2(h3, = B3 ) + psthi, = 13 )| /3

cy=2E\hy, + Ex(hy, — ) + Es(hs, — hy,)

(&)

C3

¢s = [Exhi, —h3,) + B3, —h?,)| /2

ce= [2E1h130 +Eyhi, —h{,)) + Es(h3, —h?o)] /3
¢;=2k\Ghy, + kyGolhy, — hy,) + ksGalhs, = hy,)
by = 2p15, + p2(s3 —51) + p3(S3—51)

b, = [pz(slz_szz) + 03(532‘512)] /2

by= [2p1S13 + (83 —57) + pa(si -S?)] /3

by =2E5) + Ex(s:—5)) + Ex(s3—5))

bs = [Ez(slz—-szz) + E3(532—512)] /2

be= [2E]s13 +Ex(s3 —s7) + Ex(s3 —S13)] /3

by =2k,Gis) + kaGolsz—s1) + k3Gs(s3—5y)

di = paSihy, —$aha,) + pa(sshs, —sihy,)

d, = 2p1s1h120 + pz(Szhzzo —Slh120) + 93(53h320 ~slh120)
ds =2pisthy, + pa(siha, —sthy,) + pa(sths, —sthy,)
dy = Ey(s\hy, —S2h3,) + Es(s3h3, —51hy,)

ds= 2E151h120 + Ez(szhzza _Slhlzo) + E3(S3h320 _Slhlzo)

ds= 2E1512h10 + Ez(Szzhzo _slzhlo) + E3(332h3,, "Slzhlo)

D] = a2(92 + wz) +

2a5b72 O(3b7
—*
a

7 a;
2 5 a1a5w2
D; =a)(° 4+ )y + ——
a
2
@} 2(1105137
Dy= — | —— + a0 —asb,
a; a;



OCTOBER 1989

b70{1 205b7
Dy=a; + - — — a3(92 + wz)
a; ar
alaﬁwz

Ds= —a;(P+ ) —

2 Zaab
W 1467
D= — ab+aa-—
6 <61 141 a >

7 7
— b7a3(92 + OJZ) 4 6a6b73 _ 4(!11)72 = 2b70{5
- a; ai a? @
- 012(92 + wz)

D,

Dg = 2b5 + 02(92 + wz)

a1agw?

S
I

=a;(P+w?) +
7
_ 3a,a(,b7w2 2a1011w2 2a5b1w2

s — a2+ ?)
aiy as ar

6aiasb; b 2
D“ sz[#——;(3bla6+4alal)+ _(blal_al‘XS)
a;j a; a;

aa
2@+ ) — al]
a

+

b 2b 2b 3b2

Dy = (Qz+o.>2)<a4+ 92—1> + = <b5 + B %as>

ar ay a; a;i
D13 = 2b5 + D2

2 3a,asb
D= a4(92+0)2) + E’“ <2¢1,a3—2b1a5+ 1= 7>

ar a,
2
D15 = w— |:ﬁ <6—af5_b7 + 4a1a3—3a5b1> + a1a2(92+w2)
a; | ar ar

+ 2a1b5 ‘—Zb]Ol:;:I
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