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Dynamic Analysis for Free Vibrations
of Rotating Sandwich Tapered Beams

C. L. Ko*
Oakland University, Rochester, Michigan

Governing equations for free vibrations of rotating sandwich rectangular and tapered beams are obtained
from a previous analysis using the variational method reported by the author. Both Timoshenko's and Euler-
Bernoulli's beam models are considered in these formulations. The analysis includes the effects of the variation
of the neutral-axis location along the beam due to both the centrifugal effect and a nonsymmetric geometry. This
paper presents a pioneer work to determine the vibration characteristics of both symmetrically and nonsymmet-
rically tapered and rectangular sandwich beams under rotation. Natural frequencies of these beams are deter-
mined for various rotating speeds by solving the eigenvalue problems using the finite-difference method. These
results indicate that both the asymmetric geometry and the rotating speed can affect the dynamic behavior of a
sandwich beam greatly.

Introduction

V IBRATION characteristics of rotating beams can be very
important in various engineering applications. Structural

components such as helicopter rotor blades, propellers, turbo-
machinery rotor blades, and robot arms are frequently mod-
eled as rotating cantilever beams. The problem of bending
vibration of a rotating beam was first solved by Lo and Ren-
barger.1 Boyce et al.2 later extended the analysis for various
boundary conditions and estimated lower and upper bounds
on natural frequencies. The influence of a tip mass on the
natural frequencies of a uniform rotating cantilever beam was
also investigated extensively by Handelman et al.,3 Boyce and
Handelman,4 Jones,5 and Hoa.6 Recently, Tomar and Jain7'8
determined the thermal effect on frequencies of pretwisted and
wedge-shaped beams. Laurensen9 investigated the influence of
mass representation on the equation of motion for rotating
structures. Free vibrations of centrifugally stiffened beams
were considered by Wright et al.10 Bruch and Mitchell11 also
modeled a robot link (arm) as a mass-loaded cantilever Timo-
shenko beam and determined its natural fequencies. However,
the rotational action was not considered in their formulations.

Sandwich constructions have been widely applied for vari-
ous aerospace applications for weight-saving and strength op-
timization. Bert12 presented a brief overview for such applica-
tions. Vibration problems for rectangular, symmetric, sand-
wich beams have been investigated extensively for the past
three decades. These include the analyses reported by Koba-
yashi,13 Krajcinovic,14 Kiiiiel et al.,15 Raville et al.,16 James,17

Glaser,18 Clary and Leadbetter,19 and Bert et al.20 However,
based on the author's knowledge, formulations for bending
vibrations for either tapered sandwich beams or rotating sand-
wich beams have never been reported in literature, except those
developed by the author recently.21 In Ref. 21, the author
derived the governing equations for the dynamic response and
flexural behavior of general rotating sandwich beams by ap-
plying the energy principle and the variational method. How-
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ever, only results for the semistatic flexural behavior were
obtained. The objectives of this investigation, therefore, are to
formulate the governing equations and to obtain their solu-
tions for free vibrations of both symmetrically and nonsym-
metrically tapered rotating sandwich beams. Dynamic re-
sponse of a symmetric rectangular sandwich beam is also
included in this analysis.

As pointed out in Ref. 21, the neutral axis position of a
beam does not necessarily coincide with the centroidal axis if
the beam is either under rotation or nonsymmetrically con-
structed. Analyses which included this consideration have
never been reported in literature, except by the author. In
addition, the flexural rigidity in the core and the shear defor-
mation of the facings were normally neglected in the dynamic
analyses of sandwich beams; therefore, their effects upon the
determination of natural frequencies have never been con-
sidered, to date.22 Results obtained in this paper are for the
first time calculated from an analysis that included all these
considerations.

Descriptions of the Problem
Consider a cantilever sandwich tapered beam, as shown in

Fig. 1. The origin of the Cartesian coordinates shown is posi-
tioned at the center of the core at the fixed end and the beam
is rotating with respect to the >>-axis with a constant angular
speed Q. The half-depth of the core is h\ and the transverse
coordinates of the outer edges of the top and the bottom
facings are — h2 and /23, respectively. The Young's modulus,
shear modulus, and density of the cord are given as E\,G\, and
Pi, respectively; whereas those for the top and bottom facings
are denoted as E2, G2, PI and E3, G3, p3, respectively. The
length and width of the beam are given as L and b, respec-
tively.

The general governing equations and boundary conditions
for the dynamic and flexural behavior were derived by the
author.21 The centrifugal and nonsymmetric effects on the
variation of neutral-axis positions were included in the analy-
sis, using both Euler-Bernoulli's and Timoshenko's model.
Solutions of these equations consist of two parts: a time-de-
pendent function and a time-independent function. These two
functions correspond to solutions for dynamic response and
semistatic behavior of the beam. The time-independent solu-
tions for semistatic (or flexural) behavior were presented in
Ref. 21. The present paper treats only the case of dynamic
response due to free vibrations.



1426 C. L. KO AIAA JOURNAL

The quantities K I , K?, and KS are the shear correction factors for
the core and the top and bottom facings, respectively. The
boundary conditions of the cantilever beam can be deduced
from Eqs. (65), (68), (69), and (70) in Ref. 21, as follows:

At the fixed end (x = 0):

At the free end (x = L):

dx
= 0

,
dx dx2

-as
du0

dx

(4)

(5)

(6)

(7)

Fig. 1 A rotating sandwich cantilever beam.

Timoshenko Beams
The governing equations for the dynamic response of the

beam under free vibration can be deduced from Eqs. (55-57)
of Ref. 21, as follows:

(1)

-^ =0 (2)

(3)

where u0, w0, and \l/ are the axial displacement of the core
midplane, the transverse displacement, and the angle of rota-
tional deformation of the beam, respectively. The coefficients
are defined as

hb + p3(hf-h2)]/2

a, = [2Plhl + p2(hl-hl) + pMj-

a4 = (2E{ -E2-E3)hl + E2h2 + E3

a, = (E2(h2-h}) + E3(hl-h2)]/2

a, » [2^/z? + E2(h2 - hi) + E3(hl -

07 = 2KlGlhl + K2G2(h2-hl) + K3G3(h3-h{)

Euler-Bernoulli Beams
The governing equations for the response of the beam under

free vibration can be obtained by simplifying Eqs. (75) and
(76) of Ref. 21 as

du0

>~dx

(8)

a2w0 a a2w0 at/

(9)

The boundary conditions reduce to the following:
At the fixed end (x = 0):

dw<>

At the free end (x = L):

duo dX _ n

a* dx2

d i ax

(10)

(11)

(12)

Free Vibration of a Symmetric
Rectangular Sandwich Beam

For the case of a rectangular sandwich beam, the coeffi-
cients of the governing equations and boundary conditions are
constant. In addition, a2 and a5 vanish for a beam with sym-
metric facings; hence, the axial mode of vibration decouples
from the transverse mode and the rotational mode. The axial
displacement and transverse displacement can be represented
by harmonic functions as

(13)

(14)= W(x) sin(co2^ + 62)
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where coi and co2 are natural angular frequencies for the axial
and transverse modes, respectively. The quantities B\ and 62 are
the phase angles for the corresponding modes.

Timoshenko Beams
The governing equations, Eqs. (1-3), can be reduced to the

following:

d2u01 a/2
d2U0

'"aS? (15)

(16)

The boundary condition atx=L, Eq. (7), can be simplified to

'3V , a3

(18)

Assume that the rotational mode \l/ has the same frequency and
phase angle as the transverse mode w0. The harmonic expres-
sion of this mode becomes

+ 62) (19)

Substituting Eqs. (13), (14), and (19) into Eqs. (15), (16), and
(17), one obtains

a4 -o

__ d'W
\dx2 dx3

(20)

dx

dS d2W\ (d^ d4W\— + -^) - ael^ + ̂  )

(21)

.
-— + — -y - 0dx dx2 J

Combining Eqs. (21) and (22), one can obtain

__ — l z w
dx a-j

(22)

(23)

Eq. (22) can then be expressed as follows by utilizing Eq. (23):

U«3^(coi + fi2) - - 0 (24)

The boundary conditions can be determined as follows:
At the fixed end (x = 0):

dx (25)

At the free end (x =L):

d2W
dx2

(26)

(27)

(28)

where b^a^/a-j and 62 = <
The general solution of Eq. (20) that satisfies the boundary

conditions at the fixed end can be shown as

_ __

U = A si (29)

where a2 = ai((jo2 + Q2)/a4 and A is an undetermined constant.
The following characteristic equation can be obtained by im-
posing the boundary conditions at the free end upon the modal
shape expressed by Eq. (29):

cosceL = 0 (30)

Hence, the natural angular frequencies for the axial modes can
be determined by

cof-^-Vi)2-^ -fi2, /i = l , 2 , 3 , . . . (31)

The general solution of Eq. (24) can be determined for the
following cases:

case 1: #3(o;2 +122) > a-j

W = Q cos/3 iX + C2 sin/3 ix + C3 cos/32jc + C4 sin]82A: (32)

case 2: 03(co2 +122) < a7

case 3: a3(co2 + Q2) = #7

W = Ci cos/3!* + C2 sinjSjX + C3 + C^ (34)

where

The boundary conditions can be expressed into the following
form:

C
(35)

Expressions for A:n, k\2, ̂ 21. and ^22 for all three cases are sum-
marized in Appendix A. The natural frequencies for the trans-
verse modes, co2, can then be determined from the following
characteristic equation:

-£12^21 = (36)

Euler-Bernoulli Beams
The governing equation, Eq. (8), can be simplified to Eq.

(15) and its eigenvalues for axial modes can be determined by
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using the same relationship for Timoshenko beams. However,
Eq. (9) should reduce to

ax ax ax ax

The boundary condition expressed in Eq. (12) becomes

a^w a^w awo

Substituting Eqs. (13) and (14) into Eq. (37) yields

3 dx2

(37)

(38)

(39)

The boundary conditions can be simplified to the following:
At the fixed end (x = 0):

(40)\,

= 0 (41)

= 0 (42)

At the free end (x = L):

d2W
'dx2

dW

The general solution of Eq. (39) can be determined as

W = Ci cosfjiix + C2 sinjui* + C3 coshfjL2x + C4 sinh/*2Jt (43)

where

Again, the boundary conditions reduce to the form expressed
in Eq. (35) and the characteristic equation is in the same form
as Eq. (36). Expressions for coefficients k\\, £12, &21, and k22
are listed in Appendix A.

Free Vibration of a Sandwich Tapered Beam
For a tapered sandwich beam, the depths of the cord and

facings vary linearly along the longitudinal axis of the beam.
Their edge coordinates can be expressed as

hi = HIO - Six h2 = h2o - s2x /z3 = /*3o - s3x (44)

where sl = (hlo-hiL)/L9 s2 = (h2o-h2l)/L, and s3 = (H3o
— h3L)/L. The quantities h\o, h2o, h3o are the edge dimensions
at the fixed end (x = 0) of the beam, and h\L, h2L, h^L are the
corresponding dimensions at the free end (x=L).

The coefficients of the governing equations and boundary
conditions become functions of x, as follows:

a{ = Ci~ b\x a2 = c2 — d\x + b2x2

#3 = c3 — d2x + d^x2 — b3x3 04 = c4 — b*x

a5 = Cs-dtX + bsX2 a6 = c6-dsx+ d6x2-b6x3

a-, = c7 — b-iX OL\ = d$ — 2d(X + 3b$x2

a.2 = d2 — 2d^x + 3b3x2 a3 = 2b5x — d^

<*4 = 2b2x -di a5 = Ib&c - d6 (45)

where the constants b, c, and d are defined in Appendix B.

Timoshenko Beams
The governing equations, Eqs. (1-3), can be simplified to

the following for a nonsymmetrical tapered beam:

d2u0 (d2* ax V a (^ ^ a3w0
a i - a 2 + - 2 ^ a - 2 + - ^

d2w0 du0

(46)

,
7^~ 3 "

(47)

tfr

= 0

Combining Eq. (47) and Eq. (48), one obtains

dx a7 dt2

(48)

(49)

The displacement functions can be assumed as follows for
harmonic vibration:

(50)

(51)

(52)

where U is the angular frequencies and B is the phase angle for
all three modes. Substituting these functions into Eqs. (46-49),
one can eliminate $ and reduce the governing equations to

u0 = U sin(o)/ + B)

+ 6)

-f ^)

d2(J

+ (Q2 + aj2)(*2A + *i£4)U -

~.d2W
dx3

dW

(53)

etc

U
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dw rD4(a$ - a4a6) —^ + \2D4(a3D5 + 0:̂ 4)

i d^W
a6(a5D1 - a<A2)J -^-j-

d2w——2

-D6(a5D1-a4Dl2)]w = (54)

where the functions D are defined in Appendix B.
The boundary conditions at the fixed end (x - 0) are identi-

cal to those given in Eq. (25). In addition to Eq. (26), boundary
conditions at the free end (x = L) include the following two
relations, which can be reduced from Eqs. (6) and (7):

d2W+ a7—-7- =0dx2 (55)

dW
dx

(lb-ia\ b\
6\ —2~~~ —
\ #7 #7

(56)

Approximate techniques, such as the finite-difference
method, should be used to solve the eigenvalue problem, since
the coefficients of the governing equations and boundary con-
ditions are not constant and consequently obtaining the exact
form of the corresponding characteristic equation becomes
practically infeasible.

For a symmetrically tapered beam, Eqs. (46-48) reduce to

d2u0 32u0 du0 2i ~ ~ ̂ "2 + 4" ~ °l ° = ( }

(58)

a2^ ^ a3w0 \~

(59)

Since the axial mode decouples from the other two modes, the
natural frequencies of this mode may not be the same as those
of the other modes in general. Hence, displacement functions
should be assumed in the forms of Eqs. (13), (14), and (19).
The governing equations then can be simplified to the follow-
ing by eliminating \j/ from Eqs. (55) and (56):

= 0 (60)

7 - 2on D4)

dW
) —— + (D,Dn -

d2W

= 0 (61)

The boundary conditions are identical to those for the non-
symmetrical case except that Eq. (56) can be reduced to:

(62)

——

07

Euler-Bernoulli Beams
The governing equations, Eqs. (8) and (9), reduce to the

following for a nonsymmetrical tapered beam:

32u0 d2u0

dw0 (63)

dx2dt2

- (a202 + 2b5) - = 0 (64)

The displacement functions expressed in Eqs. (50) and (51) can
be utilized to simplify Eqs. (63) and (64) to

^
=0 (65)

., ,
- 2(0^4 + 0:3^5)

d2W

——

-2(0:3^4 + ̂ 5)

= 0 (66)

The boundary conditions can be deduced from Eqs. (10), (11),
and (12) as

At the fixed end (x = 0):

- - - - dx -" ° <67)

At the free end (x=L):

d(J d2W n^ = ̂ =° (68)

d*W dW d2U

For a symmetrically tapered beam, Eqs. (63) and (64) reduce to
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Table 1 Natural frequencies of the longitudinal (o>i) and the transverse
vibrations of symmetric sandwich beams at various rotating speeds (ft

Beam A (rectangular) Beam C
o)i OJ2 (Hertz) o>i

Mode ft
number (Hertz)

0
50

100
200

1 300
400
420
500
540
600

0
50

100
2 200

300
400
500
700

0
50

100
3 200

300
400
500
600

ax ax a4\
9 _ ^ ? 1 oi2 ~ ~ 9 1 #6 ~dxzdtz dxdtz d}(

, ,ax . O 2 aw 0 _

(Hertz)
TBM & EBM

421.9
419.0
409.9
371.5
296.7
134.3
40.4

——
——
——

1266
1265
1262
1250
1230
1201
1163
1115
2110
2109
2107
2100
2088
2071
2050
2023

v0 ^ ax
:4 ^ai a*3

TBM
27.12
26.94
26.41
24.11
19.53
9.18
3.38

——
——
——

165.2
165.0
164.5
162.2
158.4
152.8
145.4
135.6
439.6
439.5
439.1
437.4
434.6
430.1
425.5
419.1

r/n

EBM
27.09
26.91
26.37
24.07
19.47
9.14
3.36

——
——
——

167.8
167.7
167.1
164.7
160.7
154.9
147.1
137.1
461.8
461.6
461.1
459.2
455.9
451.3
445.3
437.9

(Hertz)
TBM & EBM

444.2
441.3
432.8
396.6
327.5
193.1
144.5
——
——
——

1274
1273
1270
1258
1238
1210
1172
1124
2114
2113
2112
2105
2093
2076
2054
2027

G! = 2.62x

G2 = G3 = 8

(tapered)
co2 (Hertz)

TBM
26.64
26.54
26.22
24.90
22.50
18.54
17.46
11.29
4.96

——
139.4
139.2
138.9
137.5
135.1
131.7
127.2
121.5
358.8
358.7
358.4
357.2
355.2
352.4
348.7
344.2

1010 Pa

EBM
26.55
26.44
26.12
24.80
22.40
18.43
17.36
11.21
4.93

——

140.3
140.2
139.8
138.4
135.9
132.4
127.8
121.9
369.2
369.1
368.8
367.4
365.2
362.1
358.0
352.9

(3.80X

.OOxl0 1 0Pa(l
a^2

Since governing equations become decoupled, the displace-
ment functions should be assumed in the forms of Eqs. (13)
and (14). Equations (70) and (71), therefore, become

dx4

d2U dU
>^~^4^~

-2ce,

-0

d2W
"dx2

dW
dx

(72)

(73)

The boundary condition at x=L expressed in Eq. (69) be-
comes

dW
——— (74)

Since the coefficients a and a. are functions of x, numerical
techniques should be employed to solve these eigenvalue prob-
lems.

Numerical Examples
Four cantilever sandwich rotating beams are considered for

numerical computations: a symmetric rectangular beam (beam
A), a nonsymmetric rectangular beam (beam B), a symmetri-
cally tapered beam (beam C), and a nonsymmetrically tapered
beam (beam D). Aluminum core with steel facings are modeled
for the sandwich construction. Hence, the material properties
are selected, as follows:

£1-6.89xl010Pa(10xl06psi)

E2 = E2 = 2.07 x 1011 Pa (30 x 106 psi)

P! - 2643 kg/m3 (165 lbm/ft3)

P2 = P3 = 7770 kg/m3 (485 lbm/ft3)

The shear correction factors are chosen to be 0.850 for both
materials by following Cowper's formulation23 for rectangular
cross sections. The beam lengths of these beams are chosen to
be 3.05 m (10 ft). The half-thickness of the core (hi) is selected
as 0.0762 m (3 in.) for rectangular beams (beams A and B).
A uniform thickness of 0.0508 m (2 in.) is selected for both
facings of beam A, whereas the thickness of the bottom facing
of beam B is changed to 0.0762 m (3 in.) to model its nonsym-
metric behavior. The core thickness of beams C and D are
tapered from 0.0762 m (3 in.) at the fixed end to 0.0254 m (1
in.) at the free end. Both facings of these beams have uniform
thickness. Beam C has a symmetric geometry with a 0.0508 m
(2 in.) facing thickness on both sides, whereas the thickness of
the bottom facing of beam D is changed to 0.0762 m (3 in.) to
model its nonsymmetric characteristic.

Governing equations for both Timoshenko's beam model
(TBM) and Euler-Bernoulli's model (EBM) were solved by the
finite-difference method, except those of beam A. Nonsym-
metric beams (beams B and D) and the symmetrically tapered
beam (beam C) were divided into 25 and 50 segments, respec-
tivley. The eigenvalue problems were solved by evaluating de-
terminants with an order of 50 x 50.

Table 1 shows the natural frequencies of the first three
modes for both the transverse and the longitudinal vibrations
of the symmetric beams (beams A and C). Results for beam A
were obtained from the solutions listed in Appendix A. The
values of natural frequencies for both the transverse and the
extensional modes decrease with increasing rotating speed.
The fundamental frequencies disappear at a high speed of
rotation. Table 2 shows the natural frequencies of the first
three modes for nonsymmetric beams (beams B and D). The
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Table 2 Natural frequencies in Hertz for coupled vibrations
of nonsymmetric sandwich beams at various rotating speeds (ft)

Mode
number

1

2

3

n
(Hertz)

0
50

100
200
300
400
420
500
530
600

0
50

100
200
300
400
500
600

0
50

100
200
300
400
500
600

Beam B
TBM
29.30
29.11
28.53
36.06
21.10
9.92
3.62

——
——
——

176.8
176.6
176.0
173.6
169.5
163.6
155.6
145.1
464.1
463.9
463.5
461.8
458.8
454.7
449.3
442.5

(rectangular)
EBM
29.26
29.07
28.49
26.00
21.08
9.86
3.60

——
——
——

180.0
179.8
179.2
176.6
172.3
166.1
157.7
146.9
490.4
490.2
489.7
487.6
484.1
479.2
472.8
464.9

Beam
TBM
28.54
28.42
28.07
26.59
23.87
19.28
17.97
10.65
4.51

——
150.7
150.6
150.2
148.7
146.0
142.3
137.3
130.8
386.0
385.9
385.6
384.3
382.1
379.0
375.1
370.1

D (tapered)
EBM
28.50
28.39
28.03
26.54
23.81
19.21
17.91
10.60
4.49

——
152.4
152.3
151.9
150.3
147.5
143.6
138.4
131.7
400.2
400.1
399.7
398.2
395.8
392.3
387.8
382.2

Fundamental Mode

Fundamental Mod

Mode 2

Fig. 2 Modal shapes for the transverse vibration of a rotating sand-
wich cantilever beam.

Mode 2

Fig. 3 Modal shapes for the longitudinal vibration of a rotating
sandwich cantilever beam.

transverse and the extensional oscillations are coupled into one
mode with a single frequency for these cases. Their values vary
with the rotating speed in the same way as those of symmetric
beams. For most cases, the EBM predicted higher frequencies
than those calculated by TBM for higher modes; however, the
opposite trend can also be observed for fundamental modes.
The effect of beam geometry indicated by these results is in-
conclusive, also. However, for most cases, rectangular beams
have higher frequencies for transverse or coupled vibrations
and lower frequencies for longitudinal vibrations than their
tapered counterparts. Typical modal shapes of the transverse
and the longitudinal vibrations of a nonsymmetric sandwich
beam are shown in Figs. 2 and 3, respectively. Those for sym-

metric beams do not differ qualitatively from those shown in
these figures. Rotational speed also has little effect on the
qualitative characteristics of these modal shapes, except that
lower frequency modes vanish at an extremely high rotating
speed.

The natural frequencies of a nonrotating homogeneous
beam can be determined by treating it as a special case of a
sandwich beam. For a nonrotating rectangular homogeneous
beam, Eq. (31) reduces to the expression of natural frequencies
for longitudinal vibration of a cantilever beam, given by Den
Hartog.24 For a steel beam with the same geometry as beam A,
the frequencies of the first three modes can be determined as
423.3 Hz, 1270 Hz, and 2116 Hz, which are slightly higher
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Table 3 Comparison of the first three natural frequencies
in Hertz for transverse vibration of a homogeneous nonrotating

steel cantilever beam (length = 10 ft, depth = 10 in.)
calculated by using the present models and

______the classical Euler-BernouUTs model (Ref. 24)______

Present models

Case 3: #3(co2 + &2) =

Mode
1
2
3

TBM
22.78

140.0
377.5

EBM
22.77

141.6
391.4

Classical EBM
22.82

142.6
400.1

than those of beam A. This is reasonable because beam A is
less stiff than the homogeneous steel beam. Comparison of the
frequencies for transverse vibrations of this homogeneous steel
beam calculated by the present models with those calculated by
the formula given by Den Hartog24 is shown in Table 3. Both
EBM and TBM predict slightly lower vlaues than those calcu-
lated by the classical method. These results indicate that the
formulation, by including the neutral axis variation, predicts
lower frequencies than those calculated by the classical
method. The effect of this neutral-axis variation is not very
significant for low-frequency modes due to the homogeneous
and nonrotating characteristics of the beam.

Conclusions
The governing equations for the free vibration of a rotating

sandwich beam have been solved numerically and reasonable
results have been obtained. These equations include the effect
of the variation of the neutral axis position along the beam.
This effect can be very significant for a rotating sandwich
beam, due to both the centrifugal force and a nonsymmetric
distribution of property or geometry.

The natural frequencies of a rotating beam have been shown
to vary with the rotating speed. In addition, at a high speed,
the lower frequency modes or the fundamental mode can van-
ish. This indicates that the dynamic behavior of a rotating
sandwich beam can differ drastically from that of a nonrotat-
ing sandwich beam.

Appendix A: Coefficients of the
Characteristic Equation for the Transverse Response

of a Symmetric Rectangular Sandwich Beam
Coefficients of the characteristic equation, Eq. (36), are de-

fined as shown below:

Timoshenko Beams

Case 1: a3(u2
2 + fi2) > a7

*ii = (182-61) cos/32L

*2i = 0i(0i - <$! - 62) si

K22 - frtf, + 62 - 0

Case 2: a 3(u>2 + ®2) < #7

KU = (di -/32) cosfrL -

K22 = £,(5! + 62 - /

- sin/32L
P2 /

+ 182(6! + 52 - 0i) sin&L

+ 0i(0i - 6j - 62) cos&L

1 + 183) cosh/33L

sinh&L

cosh&L

K22 EE /3,(6, + 62- /32)

Euler-Bernoulli Beams

+ ju2 cosh/>t2L

! + 62)

sinhjit2L

Appendix B: Definitions of Coefficients of
the Governing Equations for a

Rotating Tapered Sandwich Beam

l6 + P2(h2o~hlo)

+ E2(h2o-hlo) + E3(h3o-hlo)

C5 s

c6 s

k2G2(h2o-hlo) + k3G3(h3o-hlo)

P3(53
3 -5?) /3

E2(S2-S})

-5?) + £3(S3
3 -5?) /3

Z?7 = 2klGlsl

d\ = Pi(s\hlo -S2h2o) + p3(s3h3o -

d2 =

2a\a5b1
\
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